Appendix F: Assessment of Bruun Factor

F.1 Preamble

The most commonly applied and well known model for beach response to SLR is that of Bruun
(1962, 1988) which assumes that an elevation in sea level will result in a recession of the
coastline. This model assumes that as the sea level is raised, the equilibrium profile is moved
upward and landward, conserving mass and original shape, based on the concept that the
existing beach profile is in equilibrium with the incident wave climate and existing average water
level (shown in Figure F-1). A recession rate can be estimated using the Bruun Rule (Bruun,
1962, 1988) as the rate of sea level rise divided by the average slope of the active beach profile.
Bruun’s Rule is expressed as:

_ X
 h+d,

(F.1)

where R is horizontal recession (m)
r is sea level rise (m)
X is the horizontal distance between h and d.
h is active dune/berm height (m)
d. is profile closure depth (m, expressed as a positive number)
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Figure F-1: Illustration of Bruun Rule

Typically, a Bruun factor, which incorporates profile slope at a particular site and thus gives
horizontal recession distance as a function of sea level rise is used to calculate recession due to
sea level rise at a given location. This appendix summarises the methodology to estimate the
depth of closure, and therefore Bruun factor, for each of the beaches in the study area.
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F.2 Depth of Closure

The depth of closure is defined as the depth corresponding to the offshore limit of active
sediment transport. Its determination is subject to large uncertainty, and is commonly assessed
using empirical methods or relying on site specific geology or sedimentology methods.

The primary method for establishing depth of closure in NSW coastal hazard assessments is
generally the Hallermeier (1981) inner depth of closure. This method, four other alternative
techniques and previously published estimates were collated for consideration by the expert
panel. It should be emphasised that the purpose of estimating the depth of closure in this study
was to provide an input to the Bruun Rule.

This section summarises the various methodologies used to assess the depth of closure at sites
across ESC.

F.2.1 Hallermeier Depth of Closure

Hallermeier (1981) stated that there were three simplified zones of sediment transport: the very
active littoral zone closest to the shore, a buffer zone in which the bed is impacted by surface
waves but to a lesser extent and an outer zone where surface waves have a negligible effect on
the profile bed. Therefore two depths of closures can be established, the inner depth of closure
indicates the end of the highly active littoral zone and the outer depth of closure, seaward of
which surface waves have little effect on littoral transport. Hallermeier (1981) states that the
inner depth of closure on a sandy beach as shown in Equation F.2 and Hallermeier (1983)
expressed the outer depth of closure as per Equation F.3.

d, = 2.28H,, — 68.5 (g”;';) (F.2)

where d, = inner depth of closure (m) below mean low water (MLW) level
Hs: = wave height exceeded 12 hours a year (m)
Ts = wave period corresponding with Hs: (s)

d; = 0.018H,,Ty, /$ (F.3)

where  d; = outer depth of closure (m) below mean low water (MLW) level
Hn, = annual median significant wave height (m)
Tm = wave period corresponding with H, (s)
s = specific gravity of sand grains, taken as 2.65
Dso = median grain size

For computation of the Hallermeier outer depth of closure, distance from the dune to the depth
of closure was limited to 1500 m. Where the computed depth of closure exceeded this point, the
depth 1500 m offshore from the dune was adopted.
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F.2.2 Equilibrium Profile

Bruun (1954) (and later Dean, 1977) proposed the concept of beach profiles, such that the
relationship between cross shore distance and depth could be related using equation F.4.

h = Axs (F.4)

where  h = depth (m)
X = cross shore distance (m)
A = sediment scale parameter (-)

Since the sediment scale parameter, A, is dependent on the median grainsize, this equilibrium
profile can be rapidly generated for each site. At the inner sections of Batemans Bay, the
bathymetry is relatively flat and shallow and sediment movement is driven not only by wave
forces, but through water movement from the Clyde River and Cullendulla Creek. Therefore, the
outer depth of closure method of Hallermeier (1983) may not be appropriate at these locations.
For this study, an alternate calculation of the depth of closure was to estimate the location where
the observed profile begins to significantly deviate from the Dean equilibrium profile, as shown in
Figure F-2. This methodology assumes that where the profile significantly deviates in shape and
slope to the equilibrium profile, the sediment transport is no longer dominated by waves, and
can therefore be considered the depth of closure for the purpose of using Bruun’s rule. This
approach to estimate depth of closure has previously been used within Batemans Bay
(SMEC, 2010) and at other international locations (e.g. NASA, 2010). In the absence of repeat
bathymetry surveys offshore of the Batemans Bay beaches, this alternative depth of closure
estimate is considered instructive. However, it is acknowledged that the equilibrium concept
assumes constant wave conditions and does not include the presence of bars. Furthermore, the
point at which the observed profile deviates from the equilibrium profile may be influenced by
the timing of the profile measurement with respect to erosion and accretion modes.
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Figure F-2: An example of estimating the depth of closure using the equilibrium profile at Surfside
Beach (East) profile 2
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F.2.3 Site Specific Geology and Bathymetry

At a number of the beaches in this study, there are specific geological features and bathymetry
that can be used to estimate the depth of closure. At these locations, there is an offshore reef
which can be identified using aerial images, such as at Tomakin Cove in Figure F-3.

After identifying the location of the reef feature that indicates the position of the depth of
closure, local bathymetric surveys were used to estimate the depth at this point. This
methodology was used at all beaches which have an obvious reef feature and included
Sunshine Bay, Malua Bay, Guerilla Bay and Tomakin Cove.
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Figure F-3: Using the rock reef to identify the position of the depth of closure at Tomakin Cove

F.2.4 Wave breakpoint depth

Given that the depth of closure is the point at which sediment movement ceases to be driven by
surface wave movement, it is conversely true that it is also approximately equal to the point
where waves are no longer significantly influenced by the water depth. A simplistic
approximation of this spatial position is the point at which waves first begin to break.

Using the SWAN model developed for the region (see Appendix D), the water depths at which
1% of the 100 year ARI waves were breaking were extracted at each location. This depth was
then assumed as an alternate depth of closure at each location. WRL considers that closure
depths estimated using this approach represent the lower limit (i.e. possibly unconservative) of
sediment movement. That is, the adopted depth of closure should be at least the depth of
1% wave breaking.
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F.3 Bruun Factor

The Bruun factor is calculated using Equation F.5 (refer also to Figure F-1) for a given dune
location and depth of closure. This methodology was used considering the four (4)
methodologies for depth of closure described above as they were appropriate and the resulting
Bruun factors are collated in Table F-1. Note that sediment size was determined by mechanical
sieving of samples collected at each location.

BF = 2= (F.5)

Xc=Xp

Where BF = Bruun factor
h. = elevation of depth of closure (m AHD)
hp = elevation of dune (m AHD)
X = relative cross shore chainage of depth of closure (m)
Xp = relative cross shore chainage of dune (m)

For reference, Table F-1 also states the previous estimates made in other studies, including NSW
DLWC (1996), SMEC (2010), GBAC (2010) and BMT WBM (2009). Table F-2 summarises the
distances used in the Bruun factor calculations.

As discussed in Section 4, Table F-1 (except for the last three columns) and Table F-2 were
presented to each member of the expert panel. They were then asked for their preferred values
for Bruun factor (minimum, maximum and mode) at each beach section on the basis of the
presented information and their own experience on the Eurobodalla coast. The experts’
independently preferred values were then blended into a consensus range shown in the last
three columns of Table F-1.

WRL Technical Report 2017/09 FINAL OCTOBER 2017 F-5



Table F-1: Depth of Closure and Bruun Factor Estimates for the Study Area

Elevations (m AHD)

Bruun Factors (-)

i WRL Dso Inner Outer | 1. ergence | Break- | Rock Inner Outer | . ergence | Break- | Rock Adopted
Beach | Section (mm) pune | Pepth Depth frgm point Reef/ Depth Depth frc?m point Reef/ Previous | Consensus Values
of of ilibri h h of of ilibri h h Estimates
Closure | Closure Equilibrium | Dept Dept Closure | Closure Equilibrium | Dept Dept .
min | mode | max
East 0.21 5.9 -2.7 -11.0 -2.9 10 59 10
I\B/Ialor;eys 501, 20-222 10
eac West 0.21 6.3 -3.6 -11.0 -2.8 9 60 9
East 0.24 3.4 -3.9 -8.2 -3.2 25 60 22 40', 20-222 | 45 20 50
Lon
Beagh Central 0.24 3.8 -4.2 -7.5 -4.4 16 56 17 - 15 20 50
West 0.24 5.3 -5.7 -8.2 -6.0 18 52 19 401, 23-252 15 20 50
Surfside | North 0.25 2.9 -3.0 -2.6 -2.3 31 25 23
Beach 25, 19-20? 20 25 30
(East) South 0.25 3.1 -3.3 -3.0 -2.3 36 29 23 20 25 30
Surfside
Beach Central 0.21 1.9 20* 15 20 30
(West)
gg;sr"”e Central | 0.21/1.01 | 3.8 | -6.7 -11.0 7.0 | -44 37 71 38 24 45-62 40
'\B"aa;”a Central 0.34 5.2 -8.0 -21.1 -12.0 | -14.7 28 44 31 33 40-492 25 30 50
Guerilla
Bay Central 0.29 4.2 -5.0 -14.8 -7.5 -11.4 20 34 22 21 25-352 25
(South)
Barlings | East 0.28 7.2 -3.7 -11.1 -3.1 17 52 16 70-852 .
Beach West 0.32 6.2 6.7 | -11.5% 6.0 26 79% 22 85-057, 56° s
Z‘;Teak'” Central 0.19 6.6 -6.9 -11.5% -6.3 -2.8 24 74% 24 21 | 85-95%40° | 29 | 25 60
North 0.21 7.5 -6.4 -15.0* -5.7 31 63* 28 25 30 65
Broulee | contral 0.21 6.6 43 15.6 3.9 30 62 29 65-752
Beach entra . - -4. -15. =3 S 25 30 65
South 0.21 4.6 -3.5 -11.3 -2.4 32 53 19 25 30 65

* Where the distance from the dune to the Hallermeier outer depth of closure was more than 1.5 km, depth of closure was assumed to at 1.5 km offshore
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Table F-2: Distances for Bruun Factor Estimates for the Study Area

Distances from Dune to ... (m)
Beach Section Inner Outer Divergence | Break-
Depth of | Depth of from point Rock/Reef
Closure Closure | Equilibrium Depth
East 85 997 89
Maloneys Beach
West 91 1037 79
East 181 693 144
Long Beach Central 130 638 139
West 195 700 211
North 179 136 118
Surfside Beach (East)
South 231 176 123
Surfside Beach (West) Central
Sunshine Bay Central 387 1043 405 194
Malua Bay Central 363 1167 542 647
Guerilla Bay (South) Central 185 653 256 326
East 190 957 169
Barlings Beach
West 338 1500%* 266
Tomakin Cove Central 322 1500* 317 197
North 432 1500%* 366
Broulee Beach Central 325 1375 302
South 260 837 133

* Where the distance from the dune to the Hallermeier outer depth of closure was more than 1.5 km, depth of
closure was assumed to at 1.5 km offshore
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